Using language models for generic entity extraction

نویسندگان

  • Ian H. Witten
  • Zane Bray
  • Malika Mahoui
چکیده

This paper describes the use of statistical language modeling techniques, such as are commonly used for text compression, to extract meaningful, low-level, information about the location of semantic tokens, or “entities,” in text. We begin by marking up several different token types in training documents—for example, people’s names, dates and time periods, phone numbers, and sums of money. We form a language model for each token type and examine how accurately it identifies new tokens. We then apply a search algorithm to insert token boundaries in a way that maximizes compression of the entire test document. The technique can be applied to hierarchically-defined tokens, leading to a kind of “soft parsing” that will, we believe, be able to identify structured items such as references and tables in html or plain text, based on nothing more than a few marked-up examples in training documents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

سیستم شناسایی و طبقه‌بندی موجودیت‌های اسمی در متون زبان فارسی بر پایه شبکه عصبی

Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...

متن کامل

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999